Signaling from protease-activated receptor-1 inhibits migration and invasion of breast cancer cells.

نویسندگان

  • L Kamath
  • A Meydani
  • F Foss
  • A Kuliopulos
چکیده

Proteases give cancer a defining characteristic of being able to break through extracellular matrix barriers and invade into other tissues in response to chemotactic signals. Recently, the cell surface protease-activated receptor (PAR)-1 has been shown to act as a chemokine receptor in inflammatory cells, and its expression is tightly correlated with metastatic propensity of breast cancer cells. The aim of the present study was to determine whether activation of PAR1 or the other known PARs (PAR2-4) can regulate migration and invasion of breast cancer cells. We found that the highly invasive MDAMB231 breast cancer cell line expressed very high levels of functional PAR1, PAR2, and PAR4, whereas minimally invasive MCF7 cells had trace amounts of PAR1 and low levels of PAR2 and PAR4. Despite the differences in expression, PAR2 and PAR4 acted as chemokine receptors in both invasive and minimally invasive breast cell lines. Quite unexpectedly, we found that activation of PAR1 with thrombin or the peptide agonist SFLLRN markedly inhibited invasion and migration of MDAMB231 cells when applied as a concentration gradient in the direction of cell movement. Additionally, we demonstrated that inhibition of chemotaxis was mediated through a G(i)/phosphoinositide-3-OH kinase-dependent pathway. Activation of G(i) signaling with epinephrine or wasp venom mastoparan also inhibited invasion and migration of the breast cancer cells. These findings suggest that therapeutics targeted toward G(i)-couplers that are selectively expressed in breast cancer cells could prove beneficial in halting the progression of invasive breast cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protease-Activated Receptor-2 Is Essential for Factor VIIa

Protease-activated receptors (PAR) are G protein–coupled receptors that function as cell-surface sensors for coagulant proteases, as well as other proteases associated with the tumor microenvironment. PAR1 is activated by thrombin whereas the upstream coagulant protease VIIa bound to tissue factor and Xa can activate both PAR1 and PAR2. PAR1 has been implicated in tumor cell growth, migration, ...

متن کامل

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells.

Protease-activated receptors (PAR) are G protein-coupled receptors that function as cell-surface sensors for coagulant proteases, as well as other proteases associated with the tumor microenvironment. PAR1 is activated by thrombin whereas the upstream coagulant protease VIIa bound to tissue factor and Xa can activate both PAR1 and PAR2. PAR1 has been implicated in tumor cell growth, migration, ...

متن کامل

Tumor-derived Cyr61(CCN1) promotes stromal matrix metalloproteinase-1 production and protease-activated receptor 1-dependent migration of breast cancer cells.

Matrix metalloproteinases (MMPs) play a central role in remodeling the tumor-stromal microenvironment. We recently determined that stromal-derived MMP-1 also acts as a signaling molecule by cleaving protease-activated receptor 1 (PAR1) to cause breast cancer cell migration and invasion. Here, we show that ectopic PAR1 expression induces expression of the angiogenic factor Cyr61(CCN1) in breast ...

متن کامل

Breast cancer migration and invasion depend on proteasome degradation of regulator of G-protein signaling 4.

Aberrant signaling through G-protein coupled receptors promotes metastasis, the major cause of breast cancer death. We identified regulator of G-protein signaling 4 (RGS4) as a novel suppressor of breast cancer migration and invasion, important steps of metastatic cascades. By blocking signals initiated through G(i)-coupled receptors, such as protease-activated receptor 1 and CXC chemokine rece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 61 15  شماره 

صفحات  -

تاریخ انتشار 2001